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Abstract
Bicycling has grown significantly in the past ten years. In some regions, the

implementation of large-scale bike-sharing systems and improved cycling infra-

structure are two of the factors enabling this growth. An increase in non-motorized

modes of transportation makes our cities more human, decreases pollution, traffic,

and improves quality of life. In many cities around the world, urban planners and

policymakers are looking at cycling as a sustainable way of improving urban

mobility. Although bike-sharing systems generate abundant data about their users’

travel habits, most cities still rely on traditional tools and methods for planning and

policy-making. Recent technological advances enable the collection and analysis of

large amounts of data about urban mobility, which can serve as a solid basis for

evidence-based policy-making. In this paper, we introduce a novel analytical

method that can be used to process millions of bike-sharing trips and analyze bike-

sharing mobility, abstracting relevant mobility flows across specific urban areas.

Backed by a visualization platform, this method provides a comprehensive set of

analytical tools to support public authorities in making data-driven policy and

planning decisions. This paper illustrates the use of the method with a case study of

the Greater Boston bike-sharing system and, as a result, presents new findings about

that particular system. Finally, an assessment with expert users showed that this

method and tool were considered very useful, relatively easy to use and that they

intend to adopt the tool in the near future.
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1 Introduction

The use of bicycles for short trips (from 1 to 5 km) in medium to large cities for

commuting, occasional, and leisure trips presents multiple proven benefits at the

global, local, and personal level. In global terms, manufacturing a car creates much

more CO2 emissions and consumes much more energy than manufacturing a

bicycle, and the same can be said about bike versus car trips (Shaheen and Lipman

2007; Weiss et al. 2015). Concerning local benefits to the city, an increase in

cycling trips in substitution of motorized trips helps mitigating traffic congestion,

decreasing air and noise pollution, and the amount of required parking space

(Sælensminde 2004). In addition, it also brings several personal benefits to both

mental and physical health (Oja et al. 2011). Research shows that commuting to

work on a bike also presents advantages concerning other active modes of

transportation, such as walking, since its higher cardio-respiratory intensity is

associated with health benefits (Shephard 2008; Hoevenaar-Blom et al. 2011).

However, both pedestrians and cyclists are more exposed to injuries than car or

transit passengers (Margie Peden et al. 2004). In the case of cycling, the risk is

aggravated when dedicated bike lanes are not available (Lusk et al. 2011).

Bike-sharing systems (BSS) were first deployed at a small scale in Amsterdam in

1965 and grew slowly throughout the following decades (Demaio 2009; Jan Ploeger

2020). The first generation of BBS is characterized by unlocked bicycles spread

over in public places for free use (Shaheen et al. 2010). In 1991, a second

generation, offering a few hundred coin-operated bikes, was born in small cities in

Denmark. In 1995, the first large-scale second generation BSS was deployed in

Copenhagen, known as Bycyklen or City Bikes. In 1996, a third generation, based

on magnetic cards and several technological advances, was initiated in England and

continued to evolve within the following years. But it was only when Lyon, in 2005,

and later Paris, in 2007, made their wide deployments of several thousand shared

bikes that these systems started to become known worldwide (Demaio 2009; Jan

Ploeger 2020). In a few years, similar programs spread throughout all the continents

with a massive growth in the number and scale of systems.

At the turn of the century, a fourth generation of BSS started to appear, requiring

no docking stations; they are called free-floating or dockless BSS. A precise

characterization of the fourth generation is not consensual, but most authors tend to

consider dockless BSS as the fourth generation (Fishman 2020). The early

implementations of those recent dockless BSS were very small scale and based on

phone calls or SMS. With the growth of the mobile internet and the popularization

of smartphones, fourth-generation BSS systems with tens of thousands of bicycles

started to be deployed in 2015.

Shaheen et al. (2010) argued that fourth-generation BSS are mainly distinguished

by advances in related technologies and by expanding the ways to use BSS. Among

these features are the offer of electric bicycles, mobile and solar-powered dock

stations, and integration with other transportation modes. Thus, they do not consider

dockless systems as a mandatory feature to define the fourth generation of BSS.
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An exponential growth of bike-sharing has been observed in both developed and

developing countries, in large and small, dense, and sprawling cities (Yanocha et al.

2018). Arguably, no other mobility system has grown so fast: from less than 100

bicycles in 2002, the bike-sharing fleet had grown to more than 600,000 in 2013.

Recent estimates mention that there are more than 18 million (Richter 2018) or

more than 20 million (Fishman 2020) shared bikes worldwide. A precise estimate is

not possible since most dockless systems are run by private companies that do not

share their numbers.

In late 2019, a market research report predicted that the bike-sharing services

market was expected to double its size, from USD 2.7 billion in 2018 to USD 5

billion by 2025 (PSI 2019). With the COVID-19 crisis, it is now challenging to

predict what will happen in the next few years, but several cities worldwide are

incentivizing cycling as a way to promote social distancing, trying to lower the

number of commuters in crowded buses and subways (Huet 2020).

This growth of bike-sharing over the last decade might be explained by the fact

that bike-sharing systems encapsulate global values that are slowly becoming a

consensus among policymakers, such as the promotion of healthier lifestyles and the

acknowledgment of the negative environmental impacts of motorized transporta-

tion. BSS are also made possible by global technological tendencies, such as the

widespread use of information technologies to amass geolocated travel data that

boosts fleet management and transportation planning (Duarte 2016). Besides, bike-

sharing systems also present a few advantages over cycling with one’s own bike,

such as (1) not requiring private parking space both at home and at the destination,

(2) not requiring to carry a bike inside a bus, subway, or train when connecting to

another transportation mode, (3) not having to worry about maintenance or theft,

and (4) being able to use the bike in just one trip during the day or in a few

disconnected trips, i.e., not requiring a round-trip.

One of the main arguments for implementing BSS is that they provide an

effective alternative for the first- and last-mile problem, mainly when integrated

with public transport (Yanocha et al. 2018; Hong et al. 2016). According to

Yanocha et al. (2018), 28 million bike-sharing trips were performed in the USA in

2016. However, this still represents a very small proportion of the trips made in

major cities. Data from the USA Department of Transportation’s 2017 National

Household Travel Survey indicate that 35% of car trips in the USA were shorter

than 2 miles, and almost half of them were less than 3 miles–a distance that could

usually be covered by cycling (NHTS 2018). Thus, there are plenty of opportunities

for the expansion of such systems both to new cities and within cities that already

have limited BSS implementations. BSS have been implemented around the world

in ad hoc manners, with little scientific, evidence-based planning. The complex

dynamics of such systems and their interaction with city life and other means of

transportation are not yet fully understood. There are multiple business models, and

public and private forms of funding BSS. Within the past few years, several BSS

companies have gone bankrupt, and most cities worldwide are still reluctant to

consider bike-sharing as an integral part of their mobility portfolio. Thus, it is not

yet clear what would be a successful business model to support BSS, and a better

understanding of its dynamics is desirable.
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In this paper, we propose a method and introduce an associated open source tool,

BikeScience, for the analysis of bike-sharing mobility flows as a means to support

the monitoring, understanding, and planning of the cycling infrastructure of cities.

Our approach differs from previous works into the field of BSS data analysis as the

proposed methodology involves dividing the city into regular grids of different sizes

to aggregate thousands of bike trips and derive flows at different levels of detail. As

input, our method uses the origin–destination (OD) trip data from bike-sharing

systems (or other sources such as OD surveys). It produces a series of metrics and

visualizations that help city officials, transport authorities, urban planners, and BSS

companies to better understand bike mobility patterns and derive actions to improve

cycling policies and infrastructure.

The tool implementing the proposed method is distributed as a collection of open

source Python libraries and Jupyter notebooks available at https://gitlab.com/

interscity/bike-science. A Jupyter notebook is an interactive software apparatus

based on a specific programming language (Python in our case) and related data

science libraries. It contains detailed associated documentation and can be cus-

tomized by programmers to different contexts. Based on the same set of Python

libraries, our group also developed an interactive web-version of the tool, which

does not require the local installation of the notebooks.

After an evaluation of the tool by Transport officials in the city of São Paulo, they

decided to adopt the tool for internal use at the city Transportation Authority. The

experts found that the abstraction of bike flows is useful in planning the ongoing

growth of the city cycling infrastructure. The tool provides them with evidence for

implementing the city policy to make cycling an alternative way of transportation.

Before using BikeScience, they did not have any robust mechanism to incorporate

quantitative data into their planning toolset. They used to plan the cycling

infrastructure based on their personal knowledge and also by performing public

consultations with citizens.

We have worked along with the transportation planners to develop new analyses

in BikeScience. For example, we are implementing a bike flow analysis using data

from the São Paulo’s 2017 origin–destination survey (OD17). This survey contains

trips made by citizens with their own bicycles in a broader (metropolitan) area

around the city, which is complementary to BSS data. We are also working together

to cross-analyze bike flows and bicycle counters. The aim is to combine those data

to update the OD17 bicycle trip information, since this travel survey is performed

only every ten years.

In the remainder of this paper, we discuss the main factors influencing urban

cycling (Sect. 2.1), related work (Sect. 2.2), and then present requirements (Sect. 3)

and our method (Sect. 4). We describe the Greater Boston case study (Sect. 5) to

illustrate the use of our method. Finally, we show how we evaluated our

contribution (Sect. 6) and present our conclusions (Sect. 7).
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2 Literature review

We now discuss existing literature that is relevant to our work. We start with the

factors that influence urban cycling in general and bike-sharing in particular. Then,

we discuss related works on bike-sharing data analysis and how this work differs

from them.

2.1 Influential factors

Previous work by van Acker et al. (2010) concluded that travel behavior derives

from locational behavior and activity behavior but is also influenced by lifestyle,

perceptions, attitudes, and preferences. A cross-sectional study of six cities in the

US showed strong effects of individual attitudes and physical and social

environment factors on bicycle ownership and use (Handy et al. 2010).

As depicted in Fig. 1, a wide variety of cultural, social, geographical, economic,

and infrastructural factors influence the cycling activity in contemporary cities

(Fishman 2016). In addition to other means of transportation, two relevant factors

are the available supply of bikes (via bike-sharing systems and other sources) and

the existing city infrastructure to support cycling. The major stakeholders

influencing the growth of cycling in the past two decades have been city

governments, investors, bike-sharing companies, and, of course, users (cyclists)

(Fishman 2016; Zhang et al. 2015; Raux et al. 2017). The latter use bikes for

commuting, travel on employers’ business, leisure, tourism, and everyday errands

(Ricci 2015; Fishman 2016).

Four common types of infrastructure that provide comfort and safety for cyclists

are (in decreasing order): (1) protected bike lanes (aka physically-separated bike

lanes or segregated cycle tracks), (2) bike-pedestrian shared trails, (3) painted bike

lanes, and (4) painted lanes shared with cars (aka sharrows) (Cambridge 2014). The

quality they provide to users is proportional to their cost, which can vary

Fig. 1 Factors influencing urban cycling
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substantially (Bushell et al. 2013). The average cost per mile of a cycling track/lane

in the USA is around $130,000.

Thus, understanding where the major flows of cyclists are located within a city is

the first step in providing urban planners with the knowledge required to draw a

good mobility plan for urban cycling. However, this alone is not enough as the

availability/lack of a proper cycling infrastructure can directly influence the

existence/absence of bike flows. It is also relevant to understand which factors

explain the existence of these flows and also which flows were expected based on

those factors but are not observed in reality. For example, the proximity of the

subway and a large density of jobs and businesses are natural sources of bike trips.

Although Wang et al. (2016) did not study bike flows, they analyzed the usage of

bike stations, showing how it is influenced by sociodemographic, built environment,

transportation infrastructure, and economic variables. Maldonado-Hinarejos et al.

(2014) studied the role of individual attitudes and perceptions in predicting the

demand for cycling. Frade and Ribeiro (2014) proposed a framework to predict

bike-sharing demand based on urban space topography and travel demand.

Beyond the general benefits of cycling, BSS are a means of facilitating access to

cycling when carrying a private bicycle is not so practical. When BSS is seen as part

of the transportation infrastructure of a city, it helps to fill the gaps left by the

conventional public transportation systems. Successful BSS implementations are

responsible for a large portion of bicycle trips in large cities where they are present

[e.g., 40% of the bicycle trips in Paris (Fishman 2020)]. For a part of the population,

BSS can provide advantages in terms of convenience, time-saving, and cost in

relation to other means of transportation (Chen et al. 2020a).

On the other hand, BSS may also bring disadvantages (Fishman 2020; Gu et al.

2019). For example, the fact that BSS and associated cycling infrastructures reduce

space for car parking is considered a disadvantage for a significant portion of car

users. However, providing more BSS stations and cycling infrastructure can

discourage car trips, a strategy that has been adopted in several cities (e.g., Boston,

Amsterdam, Melbourne) and is often seen as an advantage by contemporary urban

planners. Another disadvantage mentioned in the literature is the urban clutter that is

sometimes produced by bikes left on the curbs and sidewalks, mainly in the case of

large dockless deployments (Gu et al. 2019). But, compared to the cluttered streets

and curbsides caused by cars, this problem is really small and can be managed.

2.2 Related work

Most previous work on BSS data analysis focuses on investigating usage patterns of

individual dock stations (O’Brien et al. 2014; Faghih-Imani et al. 2014; NHTS

2018; Sarkar et al. 2015; Wang et al. 2016; Faghih-Imani et al. 2017; Duran-Rodas

et al. 2019) and/or on analyzing the overall usage of BSS in multiple cities

concerning urban features (Zhao et al. 2014; Duran-Rodas et al. 2019). Such studies

do not investigate the movements from one place to another, i.e., the origin–

destination pairs of bike trips.

Research that addressed mobility patterns often focuses on the flows from one

individual station to the other (Corcoran et al. 2014; Beecham and Wood 2014;
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Zhao et al. 2015; Zhang et al. 2018), which can provide interesting insights on the

punctual dynamics of the system. The problem is that stations usually are distributed

unevenly across the city, and each station is a too fine granularity that does not

provide an overall picture of city mobility dynamics for the urban planner. Wood

et al. (2011) proposed an elegant method for visualizing flows that resemble our

visualization technique; but their work visualizes flows from and to each station,

without spatial aggregation.

More recently, there have been studies on dockless systems. Chen et al. (2020b)

conducted an extensive survey with users to analyze the factors that promote the use

of dockless BSS. Shen et al. (2018) use GPS data from dockless trips to analyze the

distribution of trips across the regions of the city and its relationship with

characteristics of the surrounding environment and weather; they do not consider

the trajectories of the trips nor the mobility flows that are generated.

Médard de Chardon et al. (2017) collected data from 75 BSS in different

countries to analyze the number of trips per bike per day as a comparison of

performance and success. Their main conclusion is that increasing system size does

not increase performance. Duran-Rodas et al. (2019) analyzed data from different

cities to identify factors that lead to the popularity of docking stations. They found

that population, distance to city center, leisure-related establishments, and transport

infrastructure influence ridership for particular stations. They did not look into

flows.

There are a few initial works that looked at mobility flows using bike-sharing

data. Zhou (2015) used a clustering algorithm to group together flows connecting

stations in Chicago, identifying 378 relevant flows in the city for the year of 2014;

this is an interesting approach but showing so many unstructured flows to the user

does not support policy-making adequately; in addition, the computational

complexity of the clustering algorithm might hinder the method interactivity.

Similar to our work, Beecham et al. (2014) propose a visual analytic approach for

analyzing bike-sharing data. However, their focus is on automatically labeling

commuting journeys, based on a spatial analysis of travel behaviors. Their method is

then used to study commuter behavior.

Jie Bao, Tianfu He, et al. propose a data-driven approach to develop bike lane

construction plans. Based on available budget, construction convenience, and bike

lane utilization constraints, they propose greedy-based heuristics for deriving

cycling infrastructure construction plans Bao et al. (2017); He et al. (2020). They

analyze one month of trajectory data from Mobike users, a dockless system, to

identify the road segments that are used the most. Then, they use a greedy network

expansion algorithm to generate suggestions for where to build bike lanes. This is a

complementary approach that could be used in combination with the one proposed

in this paper.

Different from all previous work, we propose here a novel method, and

associated open source toolkit, to identify and analyze the most relevant bike flows

within a city. Different from the results published in the literature, our method

presents the information in a structured way, aggregating the trips from multiple

stations by regions, and providing rankings at multiple levels of granularity that can

be selected interactively by the urban planner or BSS operator. Different from
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previous approaches to flow analysis, our tool is capable of analyzing over a million

trips in a few seconds on a commodity laptop computer, providing a high degree of

interactivity for the user.

3 Requirements

To define the requirements for an effective methodology and tool for analyzing

bike-sharing data, providing a useful instrument for policy-making, we follow a

two-step process. First, we wanted to provide features that would be useful for

transport planners from city governments and bike-sharing companies; for that, we

interviewed professionals in the cities of Boston (USA), São Paulo (Brazil), and

Beijing (China) from June to December 2018. Second, we conducted an extensive

literature review of scientific papers published in international journals in the field

of bike-sharing data analysis. This literature review showed that there was little

previous research on identifying and analyzing cycling flows. Expert users, mainly

Transport Engineers from city governments, confirmed that this was really a gap in

the existing tooling for them. Thus, we decided to focus our research on abstracting

bike-sharing flows and their analysis, which was a gap both in scientific research

and in practical tools. Expert users also noted that it would be useful to have a

means to quickly extract descriptive statistics data for bike usage, selecting specific

periods, time of day, age and gender, and to plot this geographically on a map,

contrasting the data with existing transport and cycling infrastructure. This last point

has been performed in previous scientific work, but no integrated and flexible tool

was easily available to practitioners.

In particular, transportation authorities were especially interested in visualiza-

tions that would contrast the most important mobility flows (extracted from bike-

sharing and OD survey data) with the existing and planned city cycling

infrastructure (mainly segregated cycle tracks and painted bike lanes).

Thus, the major requirements for our method and tool were:

1. Easy importing and processing (with the press of a button) of raw data with

millions of trips from bike-sharing or OD survey databases.

2. Selecting specific periods of the dataset, specific time of day, day type

(weekday/weekend), gender, age.

3. Analyzing trip distance, duration, speed.

4. Identifying the most important bike-sharing mobility hubs in the city.

5. Finding the most significant mobility flows at different granularity levels

including at least, (1) metropolitan area, (2) group of neighborhoods and (3)

local area inside a neighborhood.

6. Visualizing, in an interactive map, the most relevant flows, superimposing them

with the underlying transportation infrastructure (cycling infrastructure, metro

stations, and roads).

7. Contrasting the recommended bike routes for the most relevant flows with

existing cycling infrastructure.
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8. All these features should be available in a user-friendly, interactive tool that

should provide answers in a few seconds (ideally, no more than 10 or 20 s for

each analysis).

We now define the methodology we created to fulfill these requirements and

describe a concrete case study.

4 Methodology

Our approach is based on dividing the city into homogeneous regions by using a

uniform grid and computing the number of bike trips from one grid cell to another.

We then draw directed arcs to show the flow direction and adjust the origin and end

point of flows according to a weighted average based on the station usage for that

specific flow. By manipulating the various input parameters of this method, one can

analyze different characteristics of specific mobility patterns. To simplify compu-

tation and the discussion, we use rectangular grid cells in this paper, but the method

can also be used with hexagon grids (Birch et al. 2007).

We now describe in detail the input datasets our method requires and, then, the

method components.

4.1 Datasets

Currently, hundreds of cities around the world provide information about their bike-

sharing systems as open data available on public web sites. Although most of them

contain similar information, they often use slightly different formats. The General

Bikeshare Feed Specification1 is a widely-used open standard for real-time bike

availability on stations, but it does not cover the actual trips, which is the data we

use in our analysis. Thus, when starting to work with data from a new city or from a

new system within a city, an initial step of adapting the format is required.

Typically, trip data come in multiple CSV files, each one containing 1 month of data

and follows a format similar to the one depicted in Table 1, which lays out the most

recent format for the Boston Bluebikes system.

For the use case described in Sect. 5, we processed information about 8,447,044

trips from the Boston Bluebikes system available at https://www.bluebikes.com/

system-data, covering the period from 2011 to 2018. The data was stored in dif-

ferent formats, with a few distinct patterns in different years; so an initial step of

data cleaning and standardization to the format in Table 1 was required. For some of

the analysis described in this paper, to have a better picture of the current state of the

system, we focus on the most recent 2-year period, from November 2016 to October

2018, which contains over 3 million trips.

For each trip, we use the location and time of origin and destination as well as the

gender, age, and type of user (subscriber or casual customer). The gender and age

are only available for subscribers of the system (annual or monthly member,

1 https://github.com/NABSA/gbfs.
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accounting for 78% of the trips), not for casual customers (single trip or day pass

users, accounting for 22% of the trips).

4.2 The method

The method we propose is composed of a basic procedure (Flow Abstraction) and

three additional steps (Input Filtering, Metrics Selection, and Results Presentation),

which enable the execution of a large diversity of spatial and numerical analysis.

We detail the procedures in the following.

4.2.1 Fundamental procedure: flow abstraction

The goal here is to extract abstract flows from collections of trips. First, we take the

BSS coverage area and partition it into a homogeneous two-dimensional grid

containing N �M rectangular cells (Fig. 4). Then, for every possible (origin, des-
tination) pair of cells, we compute how many trips were performed starting at origin
and ending at destination, and these counts will compose the flows. However, a

naı̈ve implementation of this procedure could lead to bad performance, which would

make the computation of thousands of flows over millions of trips to take several

minutes. This would hinder the interactivity of a software based on our method,

harming its effectiveness as an interactive tool to support public policy and analysis.

Bike trips are characterized by the geographical coordinates of their station start

and end points. Thus, we need to match those points to the grid cells where they

belong to by performing some geographical processing. By working with large

datasets in a tabular format, we took advantage of optimized modern data science

libraries such as Pandas for numerical processing and GeoPandas for geographical
processing.2

The procedure and its operations are described in Algorithms 1 and 2. Given a

collection of trips T , a geographic grid GM;N of size M x N cells over the area under

study, and a collection of bike stations S, the algorithm computes a collection of

Table 1 Sample data format specifying one trip

2 By representing origin and destination cells (i,j) as columns in a data frame structure, it is fast to sum up

the trips using the aggregation facilities in the Pandas library. To further speed up the process, we

maintain a separated file with the station coordinates and performed GeoPandas spatial joins between

stations and grid cells, not between trips and cells.
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flows F . Each trip t 2 T is a tuple containing the information in Table 1. Each cell

ci;j 2 G is a rectangle. Each bike station s 2 S is a geographical point. All

geographical data are described in terms of latitudes and longitudes. In the output

produced by the algorithm, each flow f 2 F is a tuple that contains the origin and

destination cells of that flow and its weight. All ðcs; ceÞ cell pairs in G � G become a

flow if there is at least one trip t that starts in cs and ends in ce. The weight of a flow
is defined as the number of trips abstracted by that flow.

In Algorithm 1, Spatial_Join3 performs the geospatial preprocessing step to relate

the cells in G to the bike stations in S (line 2). The result, stations and cells, is a set
of pairs (station, cell) s.t. station is located within the cell area.

Line 3 computes the number of trips that start in an origin station and end in a

destination station by using a GroupBy.Count call. GroupBy extracts all pairs of

origin and destination stations and Count reduces the collection to one tuple per

group, computing the number of trips in each group and assigning the count to a

new attribute, trip count.
In lines 4 and 5, we obtain the corresponding grid origin and destination cells for

each pair of stations extracted in line 3. The Join operation matches two collections

A and B and returns all ða; bÞ 2 A � B with a specified attribute in common. The

result of line 3 is joined twice against the result of line 2, for both origin and

destination stations, matching the ids of the stations. The end result, stored in

od stations, is a set of tuples, each containing the pair of stations, the number of

trips between them, and the pair of cells in which the stations are located.

In line 6, we use Algorithm 2 to calculate the center of mass for the origin and

destination cells of each flow. The center of mass is a geographical point computed

as the average of the station locations, weighted by the number of trips to or from

each station for one particular flow. Each flow has two centers of mass, one in the

origin cell and another in the destination. Thus, the centers of mass tend to be closer

to stations with more trips in that flow. In this manner, we abstract an origin and

destination for each flow that is more representative than adopting, for example, the

center of the grid cell.

Line 7 computes the number of trips with start and end stations that belong to the

same origin and destination cells. Line 8 joins the centers of mass with each pair of

origin and destination cells. At this point, F is the collection of flows, including

their origin, destination, and weight, i.e., the output of Algorithm 2.

In Algorithm 2, line 2 normalizes the number of trips for all pairs of origin and

destination stations between 0 and 1 and stores that value in the trip count column.

Lines 3 to 6 compute the latitude and longitude for each pair of origin and

destination stations weighted by the normalized trip count value. Line 7 groups all

pairs of origin and destination cells (flows) and sums their weighted coordinates to

obtain the average coordinate points that will represent the origin and destination for

each flow.

3 The function Spatial_Join is available in geospatial tools like GeoPandas (http://geopandas.org). The

functions GroupBy, Join, Normalize, Sum, and Count are available in Data Science tools such as Pandas

(https://pandas.pydata.org).
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The time complexity of Algorithm 1 is OðjT jÞ. The Spatial_Join operation (line

2) is OðjGj þ jSjÞ, which is linear since each station belongs to only one cell. Join
operations in Pandas can be made on indexes, passing over the dataframe rows at

once, resulting in OðjGjÞ or (OðjSjÞ), depending on their sizes. GroupBy.Count (line
3) is a sequence of split-apply-combine operations over T , which are done in a

single pass over the data, resulting in OðjT jÞ. Lines 4 and 5 have a similar

complexity behavior as line 1, since they are Join operations between

stations and grid cells (X ) and S, which would be OðjXjÞ or OðjSjÞ. Line 6

depends on Algorithm 2, which starts with a GroupBy.Normalize operation (line 2)

over the rows (R) of the OD dataset and ends with a GroupBy.Sum operation (line

7) over the rows of the centers dataset. The other lines of Algorithm 2 are O(1). As
the sizes of the centers and OD datasets are equal, Algorithm 2 is OðjRjÞ. Back to

Algorithm 1, the GroupBy.Sum operation in line 7 is also OðjRjÞ. Line 8 is OðjF jÞ
because the set of mass centers is OðjGjÞ while F is OðjGj2Þ. All other steps in

Algorithm 1 are linear operations. Thus, as T � G ^ S ^ X ^R ^ F , the time

complexity of Algorithm 1 is linear with the size of the bike trips dataset.

Algorithm 1 Flow abstraction
1: procedure AbstractFlows(T ,G,S)
2: stations and cells ← Spatial Join(G,S)
3: od station counts ← T .GroupBy(start station id, end station id)

.Count(new column = trip count)
4: od stations ← od station counts.Join(stations and cells, start station id)
5: od stations ← od stations.Join(stations and cells, end station id)
6: mass centers ← CenterOfMass(od stations)
7: F ← od stations.GroupBy(start cell, end cell).Sum(trip count)
8: F ← F.Join(mass centers, start cell, end cell)
9: return F
10: end procedure

Algorithm 2 Center of Mass
1: procedure CenterOfMass(od stations)
2: centers ← od stations.GroupBy(start cell, end cell).Normalize(column =

trip count)
3: centers.start station lat ← centers.start station lat ∗ centers.trip count
4: centers.start station lon ← centers.start station lon ∗ centers.trip count
5: centers.end station lat ← centers.end station lat ∗ centers.trip count
6: centers.end station lon ← centers.end station lon ∗ centers.trip count
7: centers ← centers.GroupBy(start cell, end cell).Sum(start station lat,

start station lon, end station lat, end station lon)
8: return centers
9: end procedure
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Algorithm 3 Separation of flows into tiers
1: procedure SeparateFlowsIntoTiers(F ,max tiers)
2: total trips ← Sum(F .trip count)
3: top flow ← Max(F .trip count)
4: total flows ← Count(F)
5: tiers ← empty list
6: flows and tiers ← empty list
7: tier num ← max tiers
8: partial ← 0
9: num flows ← 0
10: previous value ← 0
11: flows ← F .SortDescendingBy(column = trip count)
12: for f ∈ flows do
13: flows and tiers ← flows and tiers ∪ {(f, tier num)}
14: num flows ← num flows+ 1
15: partial ← partial + f.trip count
16: if partial >= (max tiers − (tier num − 1)) × total trips/max tiers then
17: flows perc ← num flows/total flows
18: tiers ← tiers∪{(tier num, top flow, previous value, num flows, flows perc)}
19: tier num ← tier num − 1
20: num flows ← 0
21: top flow ← f.trip count
22: end if
23: previous value ← f.trip count
24: end for
25: return tiers, flows and tiers
26: end procedure

4.2.2 Step 1: Input filtering

Depending on the specific analysis under consideration, we filter the data with

respect to different parameters such as age, gender, trip duration, distance, average

speed, date, and time. Workdays present similar patterns among themselves but they

differ significantly from weekends and holidays, so we normally treat these classes

separately. Within a single day, we investigate three different time periods: morning

peak (from 7:00 to 10:00), lunchtime (from 11:00 to 14:00), and afternoon peak

(from 17:00 to 20:00) as their patterns differ significantly.

Thus, to produce the input T for Algorithm 1, one needs to define a filter

FIL ¼ hp; dt; tod; gs; gen; age; dis; dur; spe; tii specifying a collection of up to 10

features that will be used to select the trips that will compose T . The ten features are

described in Table 2.

The raw amount of flows within a city is very large. Showing all of them to a user

is overwhelming and does not allow any reasonable analysis. Thus, using Algorithm

3, we divide F , the collection of flows, into four tiers, each one containing 25% of

the trips. As we will show in Sect. 5.4, the top tiers tend to be composed of few

flows that contain a large number of trips, and the bottom tiers contain a large

number of flows with very few trips. The time complexity of Algorithm 3 is OðjF jÞ,
thus it is linear with the number of flows (F ) among the grid cells. Statements in

lines 2, 3, and 4 are aggregation operations over F . Lines 12-24 compose a loop

sequence that iterates over F . The other statements of the algorithm are O(1).
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4.2.3 Step 2: metrics selection

After applying the filtering procedure in Step 1, one would typically have a set of

hundreds of thousands or a few million trips. In Step 2, we need to define which

metrics will be used in the analysis. The metrics can be related directly to the trips

(e.g., number of trips, percentage of trips to a total, distance, median, speed,

percentage of short trips vs. long trips, distribution to a variable, etc.). The same

metrics can be calculated over trips in different tiers, different time periods,

according to different values of categorical variables, such as gender, to analyze

specific effects.

Alternatively, the metrics can be related to flows. In this case, the Flow

Abstraction procedure is executed in the output of the filtering procedure to generate

the set of flows F . Then, one computes the metrics on the flows (e.g., number of

flows, number of trips per flow, distribution of flows across tiers, etc.).

For the analysis involving distances and speed, we estimate the road distance

between two stations using the GraphHopper API (http://graphhopper.com) over

OpenStreetMap. In particular, we use the bike mode route planner, which provides

bike-friendly routes. GraphHopper uses the A* and Dijkstra algorithms for

pathfinding and relies on OpenStreetMap data for optimizing paths for bikes. Based

on data from OpenStreetMap, the algorithm takes into consideration the surface,

type of highway, and elevation. It also puts a penalty on roads without a cycle path

and an even higher penalty for roads with dangerous places like tunnels or when

cars can go faster than 50 km/h. Finally, the algorithm gives preference to roads that

are part of an official cycle network or where the road is a pure bicycle-street. These

suggested bike routes are typically 30% longer than the Euclidean distance, on

average. We used the API to build a matrix containing n2 cells, where n (n ¼ 308 in

the case study described in Sect. 5) is the number of dock stations, each cell con-

taining the distance between two stations. To improve data collection time, we batch

routing requests in groups of 80, the maximum amount allowed by the API, i.e.,

each request returns an 80 � 80 matrix with the 360 distances. We then cache the

Table 2 Set of features used to filter a collection of trips

Feature symbol Feature name Typical value range Default value

p Period 1 month, 1 year All

dt Day type All, workday, weekend/holiday All

tod Time of day All, morning, lunch, afternoon All

gs Grid size From 10 � 10 to 100 � 100 20 � 20

gen Gender All, male, female All

age Age From 20 to 70 All

dis Distance From 500 m to 10 km All

dur Duration From 3 min to 60 min All

spe Speed From 10 km/h to 25 km/h All

ti Tier All, 4, 3, 2, 1 All
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collected information locally in a CSV file so that we only need to call the

GraphHopper API again when the set of stations change (e.g., when analyzing a new

city or when stations are added or moved).

4.2.4 Step 3: presentation of results

After computing the metrics, the results can be presented either in a numeric format

(e.g., in tables or graphs) or in a spatial form, typically in maps. Numeric data can

be displayed in a wide variety of formats promoting human cognitive understanding,

for example, histograms (Fig. 2), line graphs (Fig. 3), and violin plots (Fig. 8).

Spatial presentation of results typically plots different values on a geographical

map of the area under study. In our case, we are particularly interested in plotting

the flows, while relating them to different aspects of the city, including cycling

infrastructure, bus stops, subway stops, bike stations, suggested routes (from tools

such as Google Maps or GraphHopper), or sociodemographic variables from the

Census.

A crucial element in visualization is the capacity of clearly depicting the flows

against a background map with the least visual confusion as possible, avoiding

clashes among multiple flows. To that end, we plot each flow using curved arrows

from origin to destination in which the width of the arrow is proportional to the

number of trips in that flow, with respect to the other flows drawn in the same

diagram. The use of curved arrows instead of straight lines minimizes the

superposition of flows connecting different regions. It is also useful to visualize

flows connecting the same two grid cells but in opposite directions; for that, we

compute the arrow curvature to be upward in flows moving west and downward for

flows moving east.

Fig. 2 Descriptive statistics for Boston Bluebikes data
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The exact location of the start and end points of the arrow is computed separately

for each flow as the average of the coordinates of the dock stations in that grid cell,

weighted according to the number of trips for each station for that particular flow (as

described in Algorithm 2).

A concrete implementation of this method was developed in Jupyter notebooks

leveraging python libraries for data analysis and geovisualization. To ensure the

reproducibility of our results, all the source code and datasets used in this paper are

available at https://gitlab.com/interscity/bike-science. We welcome the contribution

of other researchers and programmers willing to help extending the scarce body of

open source tools for bike data analysis; we will provide the necessary support for

contributors.

5 The Boston case study

To illustrate the method presented in this paper, we use 8 years of data from the

Boston BlueBikes bike-sharing system as a case study. Boston (Boston Trans-

portation Department 2017) is a relatively bike-friendly city, having received a

silver medal award (LAB 2018) from the League of American Bicyclists in 2017.

From 2007 to 2014, the bicycle lane mileage in Boston went from 0.03 to 92 miles,

with a decrease in bicycle accidents around 14% per year (Pedroso et al. 2016).

Boston’s original bike-sharing system, Hubway, was launched in 2011, and it has

been growing since then. In 2018, its name changed to BlueBikes and it now has

over 1800 bicycles and 308 fixed stations across Boston, Brookline, Cambridge, and

Somerville; each station has from 10 to 47 docks. With the BikeScience open source

tool introduced herein, we analyzed 8.45 million bike trips since the inception of the

bike-sharing program. Fig. 2 helps us understanding usage patterns extracted from

BlueBikes data for 2011 to 2019. We used BikeScience to produce the age, and trip

Fig. 3 Evolution of trips from 2011 to 2019
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distance, duration, and speed histograms depicted in the figure. The tool presents

these descriptive statistics in a graphical form, either in its notebooks or in an

interactive web application.

Trip duration follows a log-normal distribution with a median of 10 min and with

75% of the trips taking under 16 min. The speed follows a Student’s t-distribution,

with men riding slightly faster than women.

Figure 3 shows the evolution of the total number of trips per day for the entire

system. One can see both the strong seasonal effects of the typical harsh winter in

Boston and the overall tendency for an increase in usage over the 8 years (confirmed

by the 12-month rolling average drawn in green in the figure).

5.1 The gender gap

The percentage of female subscribers using the system (drawn in red in Fig. 3)

shows not only that men use bike-sharing more frequently but that the difference

increases during winter when roads become less safe with snow and ice. The

women/men ratio was lowest in the Winter of 2015, with only 19.4% female users

in February. The highest relative presence of women so far was in September 2018,

when 27.7% of subscriber trips were made by women. The cities of Boston,

Cambridge, and Somerville have improved the quality and extension of their

cycling infrastructure in recent years (see Table 3 with the most recent data from the

Boston Department of Transportation). As women feel more comfortable and secure

in the cycling tracks, the gender gap tends to decrease (Lusk et al. 2011; Garrard

et al. 2012).

To verify whether we could identify a trend in the gender gap in bike usage, we

computed the 12-month rolling average percentage of female users, shown in the

purple line. In the past 5 years, there is no clear trend: the 12-month rolling average

percentage of female users has been oscillating between 22 and 26%. There is a

steady increase in the ratio of women in the past 18 months, but it is still too soon to

know whether this will be a long-term trend in the Boston area.

Thus, we can see that, if we desire to have fairer access to cycling concerning

gender, specific policies targeting women should be implemented. These might

involve both improvements in the urban infrastructure and educational campaigns

for cyclists and motor vehicle drivers.

Table 3 Miles of cycling

infrastructure per year (Boston)
Infrastructure type 2014 2015 2016

Protected bike lanes 1.2 2.2 2.2

Buffered bike lanes 2.9 3.5 4.6

Bike lanes 48.0 51.3 51.9

Sharrows 29.5 33.4 35.1

Total 81.6 89.4 93.8
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5.2 Grid sizes and levels of detail

When applying the flow abstraction procedure described in Algorithm 1, one needs

to define the desired level of detail to perform the analysis. By using different grid

sizes, an urban planner can understand the most relevant flows within the city at

different levels of granularity. As depicted in Fig. 4, the Boston BlueBikes stations

are unevenly spaced across the area, thus analyzing the flows from station to station

does not yield a balanced analysis of urban flows. The flow abstraction algorithm

solves that by reasoning in terms of geographical regions (grid cells).

Dividing the BlueBikes coverage area into large regions using a 10x10 grid leads

to cells that are a little larger than a square mile (1.8 � 1.8 km). This enables us to

visualize the major flows across the cities that compose the area as well as flows

across distant neighborhoods within a city. Figure 5b presents the morning peak

flows with this resolution, showing a significant west-to-east movement in

Cambridge and flows from Brookline, Somerville, and Boston towards Cambridge.

Fig. 4 Bluebikes coverage area and 20 � 20 grid partitioning
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Fig. 5 Bike flows at different levels of granularity
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A more detailed view is provided by a grid of size 20 � 20, which shows the

flows from a region the size of a typical neighborhood to the others; in Fig. 5a, one

can visualize, for example, strong flows connecting Boston’s North Train Station to

a major university and to the Financial District in the morning rush hour. Finally, a

40 � 40 grid, with square cells of 450 m, is capable of showing the local bicycle

flows within neighborhoods (Fig. 5c); with this granularity, most of the flows

represent single connections between two specific stations and a public manager or

BSS operator can identify bottlenecks or underutilized stations. In BikeScience, the

user can click on specific flows to get additional information, such as the number of

trips that flow represents. In this analysis, we discard trips that start and end within

the same grid cell, which represents 3.5% of the flows in a 40 � 40 grid, increasing

to 5.5% and 16.1% for the 20 � 20 grid and 10 � 10 grid, respectively.

Thus, city officials and BSS operators can use the method to visualize flows with

various grid sizes to analyze different aspects of mobility flows within the city, from

a macro-level across cities in a metropolitan area to a micro-level within specific

neighborhoods of a city.

Using different scales to aggregate areas may lead to different visualization

patterns (Wong 2009). Such a difference is a consequence of the Modifiable Areal

Unit Problem (MAUP) (Openshaw and Taylor 1979), in which the results of an

analysis may vary due to the type of spatial aggregation used to model a

geographical space. In BikeScience, users can change the grid size to analyze areas

of different sizes. Large grid cells (e.g., a 10 � 10 grid) will concentrate more bike

stations and more trips per grid cell. Also, the trips that occur inside a given cell are

discarded from the abstraction of flows. Conversely, smaller grid cells lead to fewer

stations and fewer bike trips per grid cell.

To mitigate MAUP-type issues, our method relies on plotting the arrows

representing the flows with the origin and destination not on the center of the grid

cell, but rather in the geographical center of mass of the trips associated with that

flow. This helps to alleviate abrupt changes in the flows related to small changes in

the grid location and size. According to our experience with BikeScience, the

overall changes in the flow patterns when the grid size and position changes are not

very drastic. Nevertheless, an analyst using the tool must be aware of the MAUP

problem and, when in doubt, play with different grid sizes. Alternatively,

Fig. 6 Variation of bike flows at different grid levels
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BikeScience also offers the option of hexagon-based grids, which might present

advantages in certain situations (Birch et al. 2007).

Figure 6 shows the variation of flows using rectangular 10 � 10, 20 � 20, and 30

� 30 grids. The flows in the figure represent morning workday trips from July 2011

to July 2019. By decreasing the grid cell size, it is possible to see an increase in the

number of flows, which brings more detailed information about how trips occur in

smaller areas.

5.3 Time periods

Mobility flows vary greatly across seasons (as shown in Fig. 3) and times of the day.

Workday flows also present patterns that are different from the ones on weekends

and holidays. As we described, our method, and its associated BikeScience tool, lets

users define filters to specify which kind of data they want to analyze. In particular,

three filters are relevant here: period (p), day type (dt), i.e., workday, weekend, or
holiday, and time of day (tod).

A city office promoting tourism might want to understand the mobility patterns

across touristic areas on weekends (Fig. 5c), while a transportation authority might

be interested in workday commuting patterns during the morning (Fig. 9a) and

afternoon (Fig. 9b). Finally, a business alliance in a certain commercial region

might get insights from analyzing lunchtime flows in its area (Fig. 9c).

5.4 Tiers

As discussed in Sect. 4.2, simply displaying all flows to a user, as performed in

previous related work, is overwhelming and does not allow a reasonable analysis.

For example, with a 10 � 10 grid for morning workday trips, from November 2016

to October 2018, the Boston area has almost 2 thousand different BSS flows. To

show this information in a comprehensible manner, our method divides the flows in

tiers. Table 4 and Fig. 7 illustrate this approach by dividing the flows in 4 tiers, each

one containing 25% of the trips.

The top quarter (tier 4) contains only 1% of the total flows but represent 25% of

the trips while the bottom quarter (tier 1) contains 1730 different flows. From

Table 4 and the violin plots in Fig. 8, one can see that the most frequently used

flows in the top tier aggregate up to 14,303 trips and tend to relate to shorter trips.

As Fig. 8 shows, the least used flows (in tier 1) tend to have longer trips.

The top quarter typically has only a few tens of flows (18 in our example) and

indicates areas in which good cycling infrastructure such as segregated, protected

bike lanes would benefit a large number of trips. The second top quarter typically

has several tens of flows (45 in our example), and indicates areas where the city

could, for example, develop infrastructures such as buffered lanes or painted bike

lanes on shared streets. Of course, this analysis would need to consider other factors

such as the currently available infrastructure and the proximity of other means of

public transportation, and potential demand generated by residential, business, and

educational centers.
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According to the data in Table 4, the city can take care of half of the bike trips by

investing in only 3% of the flows. Alternatively, developing infrastructure for 9% of

the flows would benefit 75% of the trips. The bottom tier 1 is spread over 1730

different flows; thus, most cities would not have financial means to invest in specific

cycling infrastructure for that, but it is an area in which overall education of the

population concerning cycling could bring safety to cyclists, pedestrians, and

drivers.

Table 5 shows the number of flows and the percentage of flows in each tier as one

varies the grid size. There are more flows in all tiers as we make grid cells smaller.

However, the percentage of trip flows in each tier does not vary very much. Tier 4

contains nearly 1% of all flows for all grid sizes, confirming the results shown in

Table 4.

5.5 Trip lengths

Applying filters related to the distances covered by trips enables useful examination

of different classes of trips concerning their length. Urban planners investigating the

use of bikes for longer trips may inspect, for instance, trips longer than 4 km. The

Boston analysis shows that most long trips occur in the morning or afternoon peak

hours (in opposite directions), with few such trips at lunchtime. This indicates a high

usage of such trips by commuters who are willing to start or end their day with a

long trip (requiring 15–30 min). However, as shown in Fig. 9a, b, while the morning

trips are concentrated on fewer flows (likely to be from home to work), the

afternoon trips are spread across a wide variety of flows, evidencing that bikers

probably undertake different kinds of activities after the work hours (gym, grocery

stores, happy hour with friends, dinner, etc.).

Table 4 Distribution of trips across four tiers

Tier Trips per flow # flows % flows % trips Median distance (km)

4 5111 to 14303 18 1 25 2.15

3 1797 to 4851 45 2 25 2.41

2 618 to 1787 118 6 25 3.24

1 Up to 617 1730 91 25 4.41

Tier Median duration % short trips % long trips

(m:s) \ 1.5 km [ 4 km

4 10:05 23 2

3 11:31 20 9

2 14:37 12 29

1 23:33 7 55
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Regarding short trips, the patterns are different. There is a significant amount of

them at lunchtime and Fig. 9c shows a few clear clusters throughout the city.

5.6 Mobility hubs

In addition to the mobility flows, another relevant information is what parts of the

city are the major hubs initiating or ending bike trips. Our method can be used to

analyze this issue by computing the number of trips per region instead of abstracting

the flows, as illustrated in Fig. 10. This map shows dark green markers in the top

regions of the city where bike trips start, and dark red markers in the top regions

where trips end. Light green and light red markers point to second-tier hubs. This

information can be used by city officials as one of the elements to guide where

Fig. 7 Workday morning for the top 3 tiers—each tier represents 25% of the trips
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investments should be made in local infrastructure for bicycles. The information

might also be valuable for businesses offering bike-related services and products.

While bike-sharing users do not need to maintain their bicycles, the presence of a

large number of trips by bike-sharing subscribers in a specific area might be a good

proxy for the overall presence of cyclists, i.e., including privately-owned bikes.

An alternative way to visualize this information, showing a more global view of

the entire system is via conventional heat maps such as those depicted in Fig. 11,

which shows the overall distribution of morning trip starts and ends in October 2018

workdays.

5.7 Speeders

The proposed method can be easily used to perform analysis focused on specific

situations such as detecting evidence of rider reckless behavior. The most common

reason for cycling accidents and fatalities is to be hit by a car (Coleman and

Mizenko 2018). Although the car driver is at fault many times, according to the US

Department of Transportation, from 2010 to 2015, the most common bicyclist

action before fatal accidents was the cyclist failure to yield right-of-way (34.9%)

Fig. 8 Trip length distribution across tiers

Table 5 Distribution of flows across four tiers for different grid sizes

Tier 10 � 10 20 � 20 30 � 30 40 � 40

# flows % flows # flows % flows # flows % flows # flows % flows

4 18 1 89 1 132 1 212 1

3 45 2 252 3 420 3 667 4

2 118 6 710 8 1152 8 1749 10

1 1730 91 8347 89 11,976 88 15,481 85
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(Coleman and Mizenko 2018). A city government, then, may wish to develop an

educational campaign to decrease the number of cyclists that ride their bikes

dangerously fast.

Using our method, one can easily produce an analysis of speeders. Of course, this

would be limited to BSS users and not to the general cyclist population; but it might

provide useful insights for the design of an educational campaign. For example, in

the Fast-Cyclists notebook available with the tool, we selected the trips whose

average speed was over 20 km/h. Given that the average speed for all trips is 13 km/

h and that only the 4.2% of the trips are above 20 km/h, we considered these trips to

be likely associated with cyclists riding dangerously fast. We can then draw a profile

of these speeders:

• 89% are men while only 11% are women;

• 50% of them are between 21 and 32 years old. They are present in all age ranges

under 52, but the age in which people have a higher tendency to drive

dangerously fast is 25–30;

Fig. 9 Long trips ([ 4 km) and short trips (\ 1 km)
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• Speedy trips length is 20% longer than average (they might speed because they

need to go farther away). Speedy trips duration is half of the average of all trips

(they want to get there quickly);

• A subscriber (usually, a resident of the area) is 4.6 times more likely to be a

speeder than an infrequent customer (usually, a tourist).

Such a profile can help the city to develop an educational campaign targeted at a

specific group. Besides, the geographical analysis of the flows shows on the map

where most speeding trips are often located, which can help with both the

educational campaign and law enforcement.

5.8 Additional data sources

An issue that must be carefully considered with our method is that the existence/

absence of a flow might be induced by the existence/absence of the cycling

infrastructure. Thus, urban planners must analyze the flows identified by the method

in conjunction with other data sources. Currently, BikeScience includes the cycling

infrastructure, bus stops, subway and train stations, as well as suggested bike routes.

Transport authorities and urban planners can also visualize the flows with respect to

different geographical and administrative regions of the city, which might be more

intuitive for them; for example, Fig. 12 depicts flows over the official city

neighborhoods.

By cross-analyzing the most relevant flows with respect to existing cycling

infrastructure, one can identify areas with significant flows that lack appropriate

cycling infrastructure or vice-versa. Our method lets urban planners compare the

Fig. 10 Mobility Hubs: top trip start hubs (green), top trip end hubs (red), second-tier start/end hubs (light
green/light red)
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most relevant flows with existing infrastructure. For example, Fig. 13a depicts

Boston downtown morning flows against protected bike lanes (in red), bike trails

shared with pedestrians in parks (in green), and car-shared bike lanes, sharrows, (in

orange). An urban planner can easily identify flows that are well served by cycling

infrastructure and flows that are not. By selecting a specific flow, BikeScience draws

a new map showing the recommended bike route for that flow (according to the

GraphHopper online API), so that the urban planner can analyze in detail how well

the infrastructure serves that route. Figure 13b depicts (in a dashed black line) the

recommended bike route, which, in this case, does not offer good infrastructure for

Fig. 11 Oct. 2018 trip start/end concentration
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bikers, who are forced to share the street with cars, with no protection for most of

the route.

We are currently working to include further geolocated demographic and

socioeconomic information about the population, jobs, schools, universities,

museums, parks, and entertainment centers into the BikeScience tool. Adding

new data variables to the system is relatively easy and requires little effort from a

python programmer. On the other hand, presenting relevant information to the end-

user in a useful way requires careful consideration. This work will provide urban

planners with the possibility of correlating mobility flows with the city infrastruc-

ture and socioeconomic variables. For example, if an area with many jobs is not far

from a subway station but does not present a significant flow of bikes, this might

highlight an important deficiency of cycling infrastructure in that region.

5.9 Environmental influential factors

To understand the influential environmental factors of bike-sharing trips in Boston,

we studied the relationship between trips and the points of interest (POIs). We

gathered POI data using the Google Places API (https://developers.google.com/

places/web-service/intro). There are more than 136 place types available in the API,

from which we identified 97 that occur in the Boston metro area. Among the

gathered data, we found place types for food (e.g., cafes, restaurants, bars), arts

(e.g., museums, libraries), services (e.g., accounting, post offices, ATMs), trans-

portation (e.g., train stations, subway stations), shopping (e.g., clothing stores,

department stores), education (e.g., schools, universities), health (e.g., doctors,

dentists, clinics, hospitals), and sports (e.g., gym). We collected geolocated infor-

mation about 48,347 POIs in the area covered by Boston Bluebikes.

We applied the Pearson’s product correlation coefficient (r) (Cohen 1977) to

assess the relationship between bike-sharing trips and POIs. The r values vary from

Fig. 12 Major morning flows across Great Boston official neighborhoods
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- 1 to 1, where -1 means a total negative correlation, 0 means no correlation, and 1
means a total positive correlation.

Fig. 13 Protected bike lanes (red), bike-pedestrian trails (green), and sharrows (orange) against bike-
sharing flows (blue)
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To proceed with the correlation analysis, we computed each POI type per grid

cell and correlated it to the number of trips that start (or end) in the correspondent

cell. When a user picks up or returns a bicycle in a station, s/he does not necessarily

intend to reach a POI within that grid cell. S/he may intend to go to a place that is

located in a neighboring cell. To consider this fact, we used Geodesic buffering
(Flater 2011) to distribute the weight of the POIs to their nearest cells. This buffer is

a circle that represents an influence area from the center of a cell. The circle radius

is less than the distance between the center of two neighboring cells. If a POI is in

the influence area of only one cell, it belongs entirely to that cell. However, if a POI

is in the reach area of two cells, both cells will have half of that POI. The same

rationale applies to POIs that area shared by three or four cells (Flater 2011).

We found that several POI types are highly correlated with bike-sharing trips. In

most scenarios we evaluated, more than 50 POIs have correlation values above 0.5.

Table 6 shows the 10 POIs with the highest correlations and 10 POIs with the

lowest correlation values. By looking at this table, one can have a clear view on

what kind of places attract a large number of bike trips.

The results are consistent through distinct scenarios, i.e., the POIs with high

correlation values were roughly the same for different grid sizes and periods of a

day. Cafes, parking, and restaurants are the most correlated to bike-sharing trips in

almost all cases. We observe an increase in the correlation of the destination of trips

to areas with more restaurants in the late afternoon/early evening.

These results indicate that machine learning algorithms could be able to predict

the occurrence of flows based on this kind of data. In fact, a preliminary study we

conducted (https://gitlab.com/interscity/bike-science/-/tree/master/ml-models)

showed that a random forest model based on POIs, demographic data extracted from

the US Census, and weather data was capable of predicting correctly most of the

Boston flows with high accuracy. However, further research must be conducted for

this model to be generalizable to other cities.

Table 6 POIs with best and worst correlations

High-correlation POIs Correlation Low-correlation POIs Correlation

Cafe 0.83 Bowling alley 0.01

Parking 0.80 Cemetery 0.02

Restaurant 0.79 Car wash 0.02

Bar 0.78 Mosque - 0.03

Museum 0.78 Painter 0.04

Gym 0.77 Synagogue - 0.04

Post office 0.76 Hindu temple 0.07

Real estate agency 0.76 Stadium 0.07

Lodging 0.76 Pet store 0.07

Finance 0.76 Storage 0.09
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6 Evaluation

In this section, after a brief description of the processing time required by the tool,

we report on an experimental evaluation we made with a significant number of

experts in the field of Transportation and cycling mobility. Finally, we report on the

flexibility of the BikeScience libraries to work with different kinds of data and

develop different kinds of applications and tools.

6.1 Performance

To be able to use BikeScience in interactive applications, we took special care with

performance, leveraging the speed of the underlying data science libraries we used.

In a laptop with Intel Core i7-8550U processor with 16 GB of memory and 8 MB

cache, the system took 140 s to load the data for the 8 years of data (8.45 million

trips) and 1.7 s to load a single month (March/2019). This load operation is typically

performed at system startup, before the interaction with the user. Once the data is

loaded into the system, users can interactively perform different kinds of analysis;

for example, computing all mobility flows took only 11 s for the 8 years and 3.7 s

for the latest month. Then, computing the most relevant tier took 16 s for the whole

period and 0.4 s for the latest month.

6.2 Assessment with expert users

To evaluate the perception from real users, we conducted an assessment with 26

expert users: 11 from different departments of a City Traffic Engineering Authority,

four from Non-Governmental Organizations (NGOs) related to traffic safety and

promotion of bicycle use, two from a data analysis startup, three analysts from a

dockless bike-sharing company, and six analysts from a dock-based bike-sharing

company. The expert users were presented with the BikeScience tool in an

interactive session showing the main functionalities and analyses presented in this

paper. Then, we applied a questionnaire based on the Technology Acceptance

Model (TAM) (Davis and Venkatesh 1996), a widely used model to assess how

users perceive the usefulness, ease of use, and the desire to adopt a new technology.

Table 7 shows the TAM questionnaire. It is composed of 10 items: four statements

related to usefulness (U1–U4), four related to ease of use (E5–E8), and two related

to behavioral intention to use (I9 and I10). The italic words are the main concepts

addressed by each item. We used a seven-point Likert scale to gather the

participants’ degree of agreement with each statement, from (1) totally disagree to

(7) totally agree.

As depicted in Fig. 14, most participants rated BikeScience well in the

questionnaire, deeming the tool as easy to use (E5–E8), useful (U1–U4), and

showing an intention to use it in the future (I9 and I10). Almost all responses to the

TAM items were rated positively as somehow agree, agree, or totally agree. Also,
we asked the participants their opinion about the tool. All participants deemed

BikeScience as useful for transportation planning and for the analysis of bike-
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sharing systems. Some of them suggested the inclusion of other data sources to

improve the analysis, such as traffic accidents and OD survey data, which has been

recently carried out with little effort given the high modularity of the BikeScience

libraries and the flexibility of the tool.

According to the feedback from the experts participating in the study, the tool

would support their existing workflow providing more concrete evidence on which

Table 7 TAM statements

Perceived usefulness (PU)

U1 Using the BikeScience tool improves my performance in analyzing this kind of data compared to

what I have today

U2 Using BikeScience would increase my productivity in this kind of analysis

U3 Using BikeScience would improve my effectiveness in this kind of analysis

U4 Overall, I find BikeScience useful to perform this kind of task

Perceived ease of use (PE)

E5 Learning to use the BikeScience tool seems easy to me

E6 Interacting with BikeScience does not require a lot of mental effort

E7 Overall, I find BikeScience easy to use

E8 I find it easy to rely on BikeScience to get relevant information on urban mobility with shared bikes

Behavioral intention of use (BI)

I9 Assuming I had access to BikeScience, I intend to use it for this kind of analysis

I10 Given that I had access to BikeScience, I predict that I would use it for this kind of analysis
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Fig. 14 Answers to the TAM assessment
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existing cycling lanes (1) should be prioritized for maintenance or (2) could

eventually be discontinued; also, (3) validating the existing cycling infrastructure

expansion plan, and (4) prioritizing specific construction works when implementing

the expansion plan.

6.3 Flexibility case study

To demonstrate the flexibility of the BikeScience analysis libraries, we conducted a

case study based on a request made by Transportation Engineers that participated in

the assessment described before.

The Engineers mentioned that the analysis based on OD survey data could bring

insights on how the bicycle and other means of transport are now used and could be

used in the future. They requested that we implemented a visualization of significant

urban flows of short car trips (\ 4 km) that cover a path with little inclination (\
4%), which could be potential candidates for a modal change from car to bicycle.

They also mentioned that instead of having this analysis implemented as a set of

Jupyter notebooks, it would be convenient to have a web-system that would not

require any software installation in the local computer.

To test the flexibility of the BikeScience libraries for these two new

requirements, we asked another member of our research group, who had no

previous experience with BikeScience, to develop an interactive web application to

perform the required analysis. He was able to implement the analysis requested by

the expert users in a few hours of work. The implementation of an interactive web-

based version required a little more work because he needed to learn how to use a

few new libraries for web development. The system was then concluded in about 1

week of work. The resulting interactive web-based visualization was considered by

the transportation engineers as strong evidence to support their planning decision-

making workflow.

Then, we could conclude that the provided tool (distributed as a set of Jupyter

notebooks) was considered highly useful by Transport Planners that do not have a

programming background. Also, the Python libraries, which serve as the back-end

for the tool, are highly flexible and can be used by programmers to quickly develop

new functionalities and new kinds of interfaces when required.

7 Conclusions

In this paper, we introduced a method and associated open source tool capable of

analyzing millions of bicycle trips from a city to derive relevant information about

cycling mobility patterns. The method can be useful for urban transportation

planners, BSS operators, and urban mobility researchers and fulfills the seven

requirements listed in Sect. 3. It was validated with an analysis of over 8 million trips

during the entire history of BSS in the Boston area. In particular, the procedure for

abstracting flows at different levels can be a powerful aid for public planners to make

decisions on infrastructure investments, educational campaigns, and law enforce-

ment monitoring. For example, the analysis for Boston showed that the government
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could take care of half of the bike-sharing trips by investing in only 3% of the flows;

the BikeScience tool displays graphically which of these top flows are not well

served by proper cycling infrastructure. The method can also be useful for businesses

offering bike-related services and for bike-sharing system providers. We conducted

an assessment of BikeScience with expert users following the TAM procedure. The

results demonstrated that experts consider the method and the tool very useful,

relatively easy to use, and they intend to adopt the tool in the near future.

After demonstrating the tool in front of the São Paulo Transportation Authority,

they decided to incorporate BikeScience into their daily toolset as an aid for making

decisions on planning the cycling infrastructure of the city. In particular, they will

use the tool to decide the next steps in creating new segregated cycle tracks and

painted bike lanes.

A limitation of our work is the fact that we are using bike-sharing trips as a proxy

to the overall use of bicycles in the urban space. In many cities, however, bike-

sharing represents only a fraction of the total cycling trips. It might be the case that

cyclists who have their own bikes follow different mobility patterns. This issue

could be mitigated in the future by using image processing on traffic videos to detect

bicycle flows. The difficulty with this approach is that to have significant coverage

of a city, this would require analyzing hundreds, or even thousands, of video

cameras in real-time to detect and count bike flows. To the best of our knowledge,

this has not yet been done at a scale that would allow any city-wide analysis of

mobility flows. An alternative would be to use the location service of smartphones

to detect cycling trips (e.g., based on speed). This would require tracking the

location of millions of people, which has strong privacy implications but, in fact, is

already performed by cell phone carriers and mobile OS vendors. We also observe

that the number of trips between stations depends on the availability of bicycles on

originating stations and docking spots on destination stations (Médard de Chardon

et al. 2016). Thus, rebalancing strategies to meet high user demand in stations close

to transportation hubs during rush hours may impact the distribution of trips

between stations. Notwithstanding this fact, our method reflects the actual number

of trips between all stations in the system.

Finally, the user study we conducted only shows that the users intend to adopt our

technology and believe that it will be useful for their daily work. To demonstrate that it

is indeed useful for the planning of new cycling infrastructure and to assess the quality

of this plan, we need to wait 2 or 3 years before this assessment can be conducted.

As future work, we intend to continue developing our analysis method, including

capabilities for comparing the patterns of multiple cities and correlating mobility

flows with city socioeconomic and geographical data for flow prediction. A

promising avenue for future research would be to extend our method with artificial

intelligence, machine learning, and optimization capabilities. Given a certain

budget, the method would aid urban planners in deciding where to make

investments in the cycling infrastructure. For bike-sharing operators, it could be

valuable to plug our technology into a real-time dashboard that would use both long-

term and short-term historical data to not only visualize the current flows in the city

but also predict the distribution of bikes in 1, 2 or 3 h in the future to help operators

manage the system.

123

F. Kon et al.



We also plan to offer our system to administrative authorities in cities that host a

BSS to produce evidence to support policy-making. Currently, very few cities in the

world adopt scientific evidence-based policy-making (Gray 2004). The analysis of

the large amounts of data produced by cities with scientific rigor could provide a

solid ground for the design of more effective public policies.
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